

GPT-9500 Series

Multi-Channel Hipot Tester

FEATURES

- 150VA AC Test Capacity
- 3 in 1 Tester: AC, DC, IR
- Built-in 8 Channel Scanner
- 480 x 272 Color TFT LCD
- Test Parameter Export/Import Through USB Host
- Statistics (Counter) Function
- Insulation Resistance Measurement up to $10G\Omega$
- Open/Short Check (OSC)
- ARC Detection
- Multi-language: Traditional/Simplified Chinese, English
- Interface: RS-232C, USB Host/Device and Signal I/O

Mess- und Prüftechnik. Die Experten.

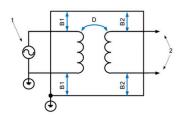
Ihr Ansprechpartner / Your Partner:

dataTec AG

E-Mail: info@datatec.eu

>>> www.datatec.eu

GW Instek introduces a new multi-channel withstanding voltage tester-the GPT-9500 series. This series has 2 models and each model has a built-in 8-channel scanner. The series meets safety regulations: IEC, EN, UL, CSA, GB, JIS and other safety regulations. The series aims at the needs of the main test items of general electronic components or winding components during routine tests.


The GPT-9500 series is a three-in-one multi-channel tester, providing AC withstanding voltage (5kV max.), DC withstanding voltage (6kV max.), and insulation resistance (1000V max.). The design of the series conforms to the latest IEC-61010-2-034 standard requirements and it is built on the output platform of AC 150VA. The status of the 8 channels of GPT-9513 can be set to H, L or X according to the test requirements, especially suitable for winding components such as transformers to perform mutual testing of multiple points of single components. The status of the 8 channels of GPT-9503 only provides the setting of H or X, which is more suitable for general components such as passive components for high-voltage testing between two points.

The GPT-9500 series adopts 4.3' color LCD (480 x 272 resolution), which provides users with complete measurement information and a user-friendly operation interface, making operation and setting parameters easier and more convenient. AUTO test supports tabular display, therefore, there is unnecessary to switch the screen to see all the test results. At the same time, the series provides the statistical counting function. Users can quickly obtain the total number of tests and the number of NO-GOs without connecting an external counter. All scanning channels are all configured on the rear panel of the tester. Other than being relatively esthetic when the tester is mounted on the rack, the design can also avoid personal injury by preventing accidental contact during the output process. The disconnection detection function is provided for the series to avoid the misjudgment of the test caused by the disconnection of the wire.

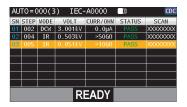
Other functions and features of the GPT-9500 series include the export/import function of setting parameters, which can copy the settings of one tester to the same model testers on the production line through a USB flash drive. By so doing, the test stations of the production lines can be quickly expanded and the risk of errors caused by repeated inputs can also be avoided; the zero start function, which avoids the impact of instantaneous voltage on the DUT; the interlock function, which is a safety protection hardware structure to allow users to connect external protection devices; display in 3 languages, which include English, Traditional Chinese and Simplified Chinese; and the Signal I/O terminal and RS-232C/USB device on the rear panel, which can be used for external control and monitoring or measurement data acquisition.

PANEL INTRODUCTION

Meets IEC 61010-2-034 Design Requirements

GPT-9500 is the world's first multi-channel hipot tester to comply with IEC 61010-2-034 (Safety requirement for electrical requirement for measurement, control and laboratory use – particular requirements for measurement equipment for insulation resistance and test equipment for electric strength). Apart from this, the safety considerations also include double insulation for input and output voltages, safe output/warning mechanism, post-test discharge mechanism, etc. to ensure user safety during the operation.

4.3' Color LCD, High-brightness Indicator and Function Keys


Operation design in simplicity is incorporated into the tester through configuring the function keys at the bottom of the LCD screen to easily change the test function by just pressing the function keys, or by rotating the knob to change the measurement value, which greatly improves the convenience of operation; updating various status indicators on the front panel immediately according to the status on the display, which not only provides users with a more comprehensive control of the test status, but also avoids unnecessary operation risks. For example, when the output is executed, the high-voltage output indicator will keep flashing.

COMPLETE INFORMATION PRESENTATION

Rich Information

The large-sized LCD clearly and simultaneously displays the test voltage, test parameters, test status, measurement value and judgment result. The channel usage status and statistical counting results (the total number of tests and the number of FAILs) can be

AUTO Mode Listed Result

displayed simultaneously, hence, users can easily obtain complete information without switching the screen or connecting an external counter. In addition, AUTO mode also supports tabular testing, which greatly improves the convenience of observation.

D. CONVENIENT PARAMETER DUPLICATION

Export/Import of Setting Parameters

The GPT-9500 series supports the export/import of setting parameters via a USB flash drive. Users only need to set one tester, and the settings can be quickly and massively copied to all testers on production lines that not only improves the efficiency of production testing, but also avoids errors caused by repeated inputs.

SETTING DATA EXPORT / IMPORT MECHANISM

Channels Configured on the Rear Panel

The channel outputs of the GPT-9500 series are all configured on the rear panel. Other than the aesthetics of the system configuration, it is more important to effectively reduce the possibility of accidental contact by personnel. Each channel provides disconnection detection to avoid performing an invalid test.

SPECIFICATIONS AC WITHSTANDING Output-Voltage Range 0.050kV ~ 5.000kV Output-Voltage Resolution $\pm(1\%$ of setting + 5V) [no load] 150 VA (5kV/30mA) 30mA ; 0.001mA ~ 10mA (0.05kV \leq V \leq 0.5kV) ; 0.001mA ~ 30mA (0.5kV < V \leq 5kV) Output-Voltage Accuracy Maximum Rated Load Maximum Rated Current Output-Voltage Waveform Voltage Regulation \pm (1% + 5V) [maximum rated load \rightarrow no load] 50 Hz / 60 Hz selectable Output-Voltage Frequency $\pm (1\% \text{ of reading} + 5V)$ Voltmeter Accuracy Current Measurement Range 0.001mA ~ 30.00mA **Current Best Resolution** 1 μ A (0.001mA ~ 9.999mA) ; 10 μ A (10.00mA ~ 30.00mA) **Current Measurement Accuracy** \pm (1.5% of reading + 50 μ A) **Current Offset** 80 μ A maximum ARC Detect Yes RAMP TIME (Rise Time) 0.1s~999.9s OFF~999 9s FALL Time OFF~999.9s **WAIT Time** TIMER (Test Time) CONT2, 0.3s~999.9s TIMER Accuracy ±(100ppm + 20ms) CND ON/OFF Output-Voltage Range Output-Voltage Resolution DC WITHSTANDING $0.050kV \sim 6.000kV$ Output-Voltage Accuracy \pm (1% of setting + 5V) [no load] Maximum Rated Load 50W (5kV/10mA) Maximum Rated Current 10mA; $0.001mA \sim 2mA$ $(0.05kV \le V \le 0.5kV)$; $0.001mA \sim 10mA$ $(0.5kV < V \le 6kV)$ Voltmeter Accuracy \pm (1% of reading + 5V) Voltage Regulation $\pm (1\% + 5V)$ [maximum rated load \rightarrow no load] Current Measurement Range 0.001mA ~ 10.00mA **Current Best Resolution** $0.1~\mu$ A (0.1 μ A ~ 999.9 μ A) ; 1 μ A (1 μ A ~ 9.999mA) ; 10 μ A (10.00mA) Current Measurement Accuracy \pm (1% of reading + 3 μ A) when I Reading < 1mA; \pm (1% of reading + 10 μ A) when I Reading \geq 1mA Current Offset 5 μ A maximum ARC Detect Yes RAMP TIME (Rise Time) 0.1s~999.9s **FALL Time** OFF~999.9s OFF~999.9s WAIT Time CONT², 0.3s~999.9s TIMER (Test Time) TIMER Accuracy \pm (100ppm + 20ms) GND ON/OFF INSULATION RESISTANCE Output Voltage Output-Voltage Resolution 0.050kV~1.000kV dc Output-Voltage Accuracy ± (1% of setting + 5V) [no load] Resistance Measurement **Test Voltage** Measurement Range / Accuracy $0.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 3\% \text{ fs}); 10.1M\,\Omega \sim 50M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 50.1M\,\Omega \sim 2G\,\Omega : \pm (10\% \text{ of reading} + 1\% \text{ fs}) \\ 0.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 3\% \text{ fs}); \\ 10.1M\,\Omega \sim 500M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ fs}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading} + 1\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \sim 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \simeq 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \simeq 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \simeq 10M\,\Omega : \pm (5\% \text{ of reading}); \\ 10.1M\,\Omega \simeq$ 50V≦V<500V 500V≤V≤1000V 500.1M Ω ~10G Ω : \pm (10% of reading + 1% fs) ± (1% + 5V) [maximum rated load → no load] **Voltage Regulation** \pm (1% of reading + 5V) Voltmeter Accuracy 10mA max. Short-Circuit Current $2k\Omega$ Output Impedance 0.1s~999.9s RAMP TIME (Rise Time) OFF~999.9s **FALL Time** OFF~999.9s WAIT TIME 0.3s~999.9s TIMER (Test Time) ±(100ppm + 20ms) TIMER Accuracy CND ON/OFF CONTINUITY TEST Output-Current 100mA dc $\pm (10\%$ of reading+2 Ω), ON/OFF **Ohmmeter Measurement Accuracy** INTERFACE Signal I/O Standard RS-232C Standard USB (Device) Standard USB (Host) Standard (for Parameter/LCD Hardcopy) Rear Output Scanner DISPLAY 4.3" Color LCD POWER SOURCE AC 100 V to 240 V \pm 10 %, 50 Hz/60 Hz POWER CONSOMPTION 400VA Max. 320(W) x 120(H) x 435(D) mm; Approx. 11 kg **DIMENSIONS & WEIGHT** The specifications apply when the GPT-9500 is powered on for at least 30 minutes under +15 °C to +35 °C. Specifications subject to change without notice. PT-9500GD3BH

IG INFORMATION	

GPT-9513 AC 150VA Multi-Channel Hipot Tester GPT-9503 AC 150VA Multi-Channel Hipot Tester

Power Cord x 1, Test Leads GHT-115 x 1, GHT-116B x 1, GHT-116R x 8

GTL-236 RS-232C Cable, 9-pin F-M type, Approx. 2 m GTL-246 USB Cable, A-B type, Approx. 1.2 $\,\mathrm{m}$ GRA-446 Rack Mount Kit, 19" 4U GHT-122 High Voltage Test Lead, Approx. 3 m GHT-123R High Voltage Test Lead (RED), Approx. 3 m GHT-123B High Voltage Test Lead (Black), Approx. 3 m

Ihr Ansprechpartner / Your Partner:

dataTec AG

E-Mail: info@datatec.eu

>>> www.datatec.eu

